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Fourier transforms have been successfully employed to produce fast, accurate calculations for
dose precompensation in proximity effect correction for electron beam lithography. The principle
advantage of this method is that it lends itself to implementation on special purpose computing
hardware which is optimized for the generation of one- and two-dimensional Fourier transforms.
However, the extremely accurate data base produced by the direct employment of the method is
excessively large and, therefore, not practical. A controlled method for approximating this
accurate solution is required which gives rise to the least mean-square error in the net exposure.
This process of approximation can reduce the data base by “thinning” or selectively removing
larger and larger features. In this paper we explore the use of two-dimensional Haar transforms
for thinning the data base. An additional benefit of using Haar transforms is that they may also be
computed with the same hardware accelerators which speed up the calculation of Fourier

transforms.

I. INTRODUCTION

A previous paper' described a technique [which we term the
Fourier precompensation (FP) method] that can be used to
compute the adjusted doses for reducing the proximity effect
in e-beam lithography. Kern? seems to have been the first to
employ Fourier transforms in proximity correction. While
the treatment in his paper is quite general, it appears he used
the method in practice as an alternate means for repairing
regions of artwork where the more traditional methods of
pattern dimension adjustment (windage)® and pattern dose
adjustment® failed to work properly. The accuracy of the
Fourier precompensation approach suggests that a more
widespread use of this technique might be feasible in which
the FP method completely replaces the traditional calcula-
tions. Certainly a greater reliance on automated use of the
FP method seems worth considering on the merits of its ac-
curacy. Nevertheless, such calculations on ordinary Von
Neumann computers are too slow to be attractive. On the
other hand, the Fourier transform lends itself to implemen-
tation on fast, special purpose computing equipment termed
attached array processors which accelerate this kind of cal-
culation greatly. For example, the medium priced Floating
Point Systems model 5430 can execute a two-dimensional
Fourier transform for a 512X 512 pixel pattern (262 144
points total) in only 0.5 s (ignoring disk transfer times). On
the basis of this machine’s performance the full processing
time for proximity correction of patterns of typical dimen-
sions would be on the order of 1 or 2 h depending, of course,
on the actual size of the pattern and the minimum feature
size.

Il. THE NEGATIVE DOSE PROBLEM

One problem confronting the FP method is the presence
of extremely large oscillatory positive and negative applied
dose values which are to a large extent associated with the
abrupt transitions between “‘on” and “off”’ regions of the
desired pattern. The step discontinuities at the transitions
become rounded by the proximity effect unless corrections
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are applied. The corrections attempt to force the original
sharp edges to reappear in the net exposure. It is easy to see
that some negative excursions in the applied dose are re-
quired to accomplish this. However, abrupt transitions also
tend to excite an oscillatory Gibbs phenomenon in the cor-
rected dose. Kern? suggested softening the discontinuities in
the ideal dose by introducing a slope or bevel at the transition
boundaries. The Gibbs phenomena, however, are extremely
sensitive to the shape of this bevel. A somewhat more
damped Gibbs oscillation is observed in the precompensated
applied dose if the bevel is replaced by a smoother taper.'
Ultimately an optimum taper can be developed for a given
degree of proximity effect. To concentrate on minimizing the
negative excursions an antisymmetric taper can be selected
which emphasizes the smoothness of the lower portion of the
transitions in the pattern.

In any case the negative excursions produced by the FP
method never seem to completely disappear. Once the nega-
tive excursions are minimized by use of an optimum bevel or
taper the question remains how best to handle the residual
negative doses. Kern suggested clipping all negative doses to
zero. This works in some cases but not always. Clipping in-
troduces an uncontrolled nonlinear distortion whose effects
are difficult to predict. The authors have suggested adding
an offset sufficient to guarantee a positive dose everywhere.
This latter method tends to adversely affect the beam on-

. time and to increase the complexity of the data base some-

what. Probably a combination of these two methods is best,
but a formal method of deciding what clipping level or addi-
tive offset to use is not yet known.

Ill. EXTENSIONS TO TWO DIMENSIONS FOR THE FP
CORRECTION METHOD

Previous papers by the authors on this subject have been
limited to one-dimensional bar patterns for simplicity. Ex-
tensions to two-dimensional patterns are straightforward,
but there are significant programming problems scaling up
to the raw data base which arises in two-dimensional pat-
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terns of practical size, and a different approach is required.
Ignoring the discrete nature of the computer calculation for
the moment, we may write the effective exposure E (x, y) in
the resist resulting from the applied dose G(x, y) using the
two-dimensional convolution:

E(x,y) = f f Gx',y\Flx — x',y —y')dx' dy', (1)

where F (x, y) is the two-dimensional point spread function
resulting from an infinitesimally small beam spot [which can
berepresented by G (x, y) = & (x, y)]. This convolutionisalin-
ear transformation which has an inverse. The Fourier pre-
compensation method amounts to convolving the entire de-
sired pattern E {x, y) with a precompensating filter H {x, y):

G x,y) = f f_w EW, Y \H{x—x\,y—y)dxdy, ()

where H (x, y) is the inverse Fourier transform of 4 ( jo,, jw,)
which is the reciprocal of the Fourier transform f{ jw,, jw,) of
the point spread function F(x, y). We will find this form of
the FP method advantageous for handling large patterns.

When programmed, these steps must be carefully discre-
tized and specialized for patterns of finite extent. This leads
to the use of the discrete Fourier transform (DFT) with a
change of spatial dimension units to accommodate integer
indexing-

—1M~—1

2 2 F(x y)e——lm(px/L+qy/M) (3)

x=0 y=0

with similar expressions for g,,,, €., and 4,,,. For the reader
unfamiliar with digital signal processing we note that the
discretized version of the continuous Fourier transform of
Eq. (1)

€pq = 8pg f pas (4)
is not the DFT for the discretized /inear convolution corre-
sponding to Eq (1) which would be

Ex,y)= Z Z G, y)Fix —x',y—y'). (5)

xX=0y=
Instead, Eq. (4) is the DFT corresponding to a circular con-
volution®®

2 z G\ pWF(lx =X\, |y —¥Iu)  (6)

xX=0y=0
where the vertical bars are the modulus function.
This latter expression includes a wrap-around effect at the
ends of the convolution interval which is due to the modulus

Ex, y)=

in Eq. (6). This wrap-around effect may be avoided for sig]

E ’
E_(6,y) = { (x, »)

0 elsewhere

The single large convolution to produce G is then written as

follows:
RL, —1SM, -1
Gx,y)= Y Y EX.y)Hx—x,y—Y)
x' =0 =0
RL,—lS)I:{,—l
B x'=0 y =0
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nals of finite duration by extending the signal data set size
and padding with zeros. For example, if G is of finite extent
in the interval [0, L, — 11X [0,M, — 1] and F is of finite ex-
tent in the interval [0,L, — 1] X[0,M, — 1] then the wrap-
around effect in Eq. (9) may be avoided by extending both
data set sizes to

[0!L1+L2_2]X[0’M1 +M2—2],

and setting the extra trailing array spaces to zero in both
cases. The resulting data set is big enough to prevent the
wrap-around effect from altering the desired data and just
large enough to contain all of the potentially nonzero results.

In executing the FP correction as in Ref. 1, it would be
tempting to execute a single large transform for each of the
functions of interest in order to arrive at the discretized im-
plementation of Eq. (4). While simple in concept,’ the execu-
tion of such a single large transform is impractical even on
the most powerful of the available array processors. For ex-
ample, the Floating Point Systems 164/MAX has only
16X 10° (64 bit) words of fast directly accessible memory
when maximally configured. Allowing for storage of real
and imaginary parts of all four variables g, , €,,, 4,4, and f,,
the typical image or pattern size would only be 1000 < 1000
pixels. Furthermore, the point spread function F (x, y) and its
transform f,, really do not require such a large data set size.
Therefore, the most straightforward approach is inefficient.

To cope with the large number of pixels required to specify
the typical patterns of interest it becomes necessary to
“stitch” together the results of the many small subregions.
Note that these regions can be as small as a single memory
cell pattern, or as large as a significant portion of the pattern
for alarge chip. In effect, Eq. (4) represents a convolution of a
very large pattern with an inverse precompensating filter
H (x, y) which has a fairly small data set. The stitching is
accomplished using either the overlap-and-add or overlap-
and-save techniques of digital signal processing theory. For
the overlap-and-add method the desired pattern E (x, y) is
sectioned into a mosaic of functions £, (x, y} each of which is
zero outside of rectangular nonoverlapping regions (or
“tiles”) of dimension L, by M, and such that the union of
these intervals covers the entire pattern. Assuming that
there are RS of these subregions we can write

R—~18-1
Exy)= 3 > E,x), (7)
r=0s=0
where
(8)
I
R-15-1
35S E,,(x',y')]H(x—x',y—y')
r=0 s=0
—lS—l RL, —1 SM,
Y SENVHEK-—x,y—Y)
re= Os 0 x=0 =0
R—-1S8-1

=3 Y Gulx—rL,y—sM) o)
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F1G. 1. Floor plan for subdividing the overall pattern into .S X R regions or
“tiles.” Stitching regions for the overlap-and-add method are shown
hatched for the tile withs = 1 and r = 1.

where, recalling that E, (x, y) is nonzero only as shown in
Eq. (8), we can write

r+ 1L, —1 s+ 1M, — 1
G,s(x,y) =
x'=rL, Y =sM,
E (x,))H(x+rL, — X',y + sM, -y
L—1M—1
=S S EIxyHE—x"y—y") (10
x"=0y" =0
Here,
E[x,y)=E,(x +rLy,y + sM,) (11)

is a copy of E (x, y) for the rs* mosaic subregion (or tile)

translated down to the origin of the x, y plane. Equation (10)
is a conventional linear convolution upon the translated tile
whose nonzero extent is [0,L, — 1] X[0,M, — 1].

The nonzero extent of H will also be assumed finite and
confined to the region [0, L; — 1]X [0, M; — 1]. Note that
M, might be different from M,. Following the previous dis-
cussion for Egs. (5) and (6) we see that each G, (x, y) must be
calculated in a region

[0, L, + L, —2]X[0, M, + M; 2],

in order to accomodate all the nonzero results which can
potentially arise.

When the data on these tiles are retranslated by Eq. (11)
back to the proper position we find that the new tiles are
bigger than the original ones, and they will not fit in a nono-
verlapped manner into the same spaces. Hence, the new tiles
must overlap as shown in Fig. 1. In the overlapped regions
the results from each tile simply add together as shown in
Eq. (9). Therefore, the stitching of the tiles is straightforward
in the FP method, and the convolutions for each of the tile
regions of Eq. (10) can be executed with fast Fourier trans-
form (FFT) hardware. Observe that one must recheck the
positivity of the FP dose in the stitching regions. Note also
that several tile overlap regions may contribute to the stitch-
ing corrections at a given point when these overlap regions
intersect. It is essential that these stitching corrections be
included since features in these regions might otherwise be-
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come distorted or lost. This is because of the “spill” of the
proximity effects from one tile to the next.

It is normally important to make the tiles of the original
sections for E (x, y)in Eq. (8) have as large a dimension as fast
memory storage permits using a given computing system,
since the FFT operations will then be more efficient. How-
ever, in highly periodic cellular spatial patterns such as are
found in memories there are obvious advantages to using the
method with smaller tiles (which are the cells) since after FP
correction the results are simply superposed using Eq. (9)
taking into account the proper stitching corrections. There is
also no reason why the tiles all have to be of the same size.

IV. HAAR THINNING

The data base for G (x, y) produced by the FP method con-
tains far too much detail to be practical, and a method to
reduce this complexity (or “thin” it) is needed. The process
of simplifying the data base is equivalent to approximating
the FP dose while controlling the error in the exposure
E (x, y). For lithography the pointwise error made in E (x, y)
during this approximation process is crucial since an error at
any point (x, y) which exceeds the developer threshold will
obviously change the final result. We also note that the con-
cept of a threshold (which is nearly universally used in most
commercial two-dimensional proximity correction codes)
may itself be an imperfect model of the behavior of the devel-
opment process, especially at submicron dimensions. Never-
theless, the uniformity produced by the FP method is still
advantageous.

Unfortunately, a fast, convenient method for monitoring
this pointwise error during the approximation process is un-
known. Instead, the mean-square error is monitored. This is
because approximations involving the deletion of terms in an
orthonormal expansion introduce a mean-square error
which can be directly computed from the expansion coeffi-
cients of the deleted terms.

Walsh functions have been studied for thinning' but a
comparison with the Haar transform suggests that the Haar
transform produces superior results.® In either case the
“thinning” process consists of deleting some of the basis
functions in the transforms. The orthonormal pulselike
Haar basis functions H (m,x/L ) are defined by®

HAR(O,x/L)= 1 O<x/L<1 (12)
1 0<x/L<1/2

-1 1/2<x/L<1 (13)

HAR(1, x/L) = {

(a)

B S———— HAR (0, 1)
WALBT)— i~ e/, par(l,n
WALIT, TV — — 1 1 b0

(6,T) E—‘::\:;——— HAR(2,1)
WAL — LS J W ey NS ,
WAL(5,T) — L~ 2

z

——Ty marG,n
, zf—;t',— HAR(4 1)

waL(l, T} oo ZEI

WAL (0,T) HAR(5 ,1)
A sel of Walsh functions arranged in sequency 2

order -v——z%‘ HAR{E ,1)
———dqj HAR(7 ,t}
= ,

()

FI1G. 2. The first few (a) Walsh and (b) Haar basis eigenfunctions.
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FiG. 3. Point spread function with B, = 0.10 4, B, = 2.00 , and % = 0.95.
The square base of the figure is 1.0  on a side.

and

HAR(2? +n,x/L), n=0,..,27 —1

2¢ (n/2°)<x/L <(n + 1/2)/2°
=1 -2 (n+1/2)/2°<x/L <(n + 1)/2°,
0 elsewhere

for x taking discrete values in the interval [0, L ]. The Haar
basis functions are collected together by this notation into
groups fixed by the size parameter g, which sets the width of
the pulses in a given group to 1/27 (see Fig. 2). Deleting all
basis functions with a pulse group size index greater than o,
limits the spatial feature resolution of the overall result to 1/
2°'. This provides one measure of the degree of thinning
accomplished by deleting an entire group. Of course, if dele-
tion of a specific basis function introduces a large error one
must retain it regardless of its group size . The index 2% + n
is termed the ‘“‘sequency’”’ number for a given Haar basis
function.

The two-dimensional Haar transform pair can be written
as follows:

L-1M—1

Gxy)= S S G, HAR(p,x/L)HAR(g, y/M),
Pt (14)

1 L—1M-—1

= Tar > Y Gix,y)HAR(p, x/L) HAR(g, y/M).
x=1yp=1
(15)

The most likely point in time for application of this transfor-
mation would be the precompensation for a tile after over-
lap-and-add stitching corrections have been performed. For
best results it has been found that the transitions or step
discontinuities should be spatially synchronized with the
transitions in the desired pattern as much as possible.® A
Haar function which “straddles” one of the pattern transi-
tions creates large errors if deleted. On the other hand retain-
ing these straddle basis functions causes the data base to
enlarge. Of course, not all transitions will be synchronized
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and a shift of the transform origin becomes part of the proce-
dural adjustments to maximize synchronization.

V. THE EFFECTIVE EXPOSURE ERROR

The Haar functions are orthogonal and form a complete
basis for square integrable functions in the Lebesgue sense.
Consequently, the derivation provided in Ref. 1 for Walsh
thinning still applies and the mean-square €% induced in the
final exposure by the thinning operation is bounded by

&< S SI6ul)’

P.qe¥

(16)

where ¥ is the list of indices corresponding to the deleted
terms. Because of the pulselike character of the Haar basis
functions the error caused by a deletion is confined to the
interval where the pulse is nonzero. By comparison, all of the
Walsh basis functions are nonzero everywhere and deleting
any one of them from the complete expansion introduces
errors throughout the entire data base. The data compres-
sion observed using the Walsh transform occurs primarily in
the sequency transform space. The data base compression is
less powerful in the spatial domain using Walsh functions
than with the Haar functions. For this reason the short dura-
tion pulselike character of the Haar basis functions gives a
more nearly pointwise interpretation of the mean-square ap-
proximation error in E (x, y) and the data base compaction in
the spatial domain is more evident.

As in the case of the Walsh transform, we note that for the
Haar transform (or, in fact, any orthogonal expansion) the

FIG. 4. Two-dimensional desired net exposure pattern for comparison with
other space domain figures. The narrow gap is 0.20 2 in width, and the small
square is 0.50 £ on each side. The square base in this and all subsequent 3D
perspective space domain plots is 10.0 ¢ on a side. That is, the horizontal
scale is ten times that shown in Fig. 3.
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coefficients remaining after the deletion of some of the terms
need not be readjusted. They are already optimal under the
least mean-square error criterion and any adjustment will
only increase the mean-square error further.

To avoid problems in the vicinity of the stitching regions
the thinning process should be made less aggressive where
the tiles abut to insure more accuracy. This assures that any
differences in the independent thinning processes which oc-
cur in two adjacent tiles won’t clash at the boundaries of the
tiles.

Additional errors arise if the applied dose is quantized. To
be absolutely certain that the deviations of the net exposure
after thinning (and dose quantization) do not cause an actual
crossing of the developer threshold, a simulation using Eq.
(1) is advisable. If, in fact, the developer margin is too small
in some region then some of the Haar coefficients may have
to be reintroduced in the vicinity of the occurrence of the
insufficient margin.

The preference for the Haar transform here is motivated
in part by the fact that fast Haar transform (FHT) algorithms
usually lend themselves to implementation on the same com-
puting hardware which accelerates the fast Fourier trans-
form (FFT). In addition, whereas the Fourier transform for a
block of data of length n requires # log,(n) operations, the
Haar transform is linear in # and therefore, even faster than
the FFT, leading to extremely fast thinning times.®

One final comment is in order concerning the amount of
working disk storage required to implement the FP method
followed by thinning. The largest amount of storage is re-
quired when executing the FP calculations for neighboring
tiles. Pixel level representations for the pattern are only re-
quired during these computations. If thinning or data base
compaction is performed immediately, it is never necessary
to store the entire pattern at the pixel level (which would
certainly require hundreds of megabytes of disk storage).

0.2 p

1.5 u

3.3y
5.0 u

0.5u

1.0 p

FIG. 5. Plan view projection of the pattern features corresponding to Fig. 4.
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VI. COMPUTED RESULTS

For the purposes of discussion we have arbitrarily adopt-
ed parameters for a point spread function measured at IBM
for the EL-2 using 0.6 g of polymethyl methacrylate
(PMMA) on a silicon substrate with a beam acceleration vol-
tage of 25 keV. Here'""'?

F(x,y)=exp[ — (x* + y*)/B}]
+ n(@®/B?exp[ — (x> + y*)/B1], (17)

Fi1G. 6. (a) Unprecompensated net exposure obtained by convolving Fig. 4
with Fig. 3 according to Eq. (1) (front view). Note that the small 0.50 z
square feature is underdosed relative to the other features primarily due to
back scattering near the larger features which tends to increase their local
exposure levels. (b) Rear view of (a) showing the narrow 0.20 x gap has
nearly disappeared primarily due to forward scattering.




170 Haslam et a/.: Two-dimensional Haar thinning

e —

FIG. 7. Original desired dose of Fig. 4 with tapers and aprons affixed.

where the first term is due to the forward scattering in the
resist and the second is due to backscattering in the sub-
strate. (We have taken'> B, =0.10 u, B, =2.00 z, and
7 = 0.95). This is plotted in Fig. 3.

Figure 4 shows the two-dimensional desired pattern
which will be examined throughout the rest of the figures.
The two critical features consist of the narrow 0.20 z gap
between the two large rectangles, and the small 0.50 u
square. This pattern contains features which are extremely
challenging to reproduce. Figure 5 contains the plan projec-
tion view giving detailed dimensions. With no precompensa-
tion the convolution of Eq. (1) produces the net exposure
shown in Figs. 6(a) and 6(b). The narrow gap has nearly dis-
appeared, and the small square is insufficiently dosed to have
these two features develop to proper size simultaneously.

Next, following the conclusions of Ref. 1 the edges and
comners of the patterns have a taper or apron affixed to all
edges to minimize the Gibbs oscillations, especially the nega-
tive ones. This is shown in Fig. 7. The dose taper consists of a
fillet whose shape has been taken as

Fi¢)= {—;—+—;-cos[(§—§o)/D]]p, (18)

where £ is the distance from the onset of the ideal dose down-
ward transition, &, is an offset into the feature designed to
place the maximum downward slope at the location of the
transition, D is the taper width, and p is typically 3 for the
feature sizes discussed here.

Next, the inverse precompensation filter 4,,
and further multiplied by the low-pass characteristic
shown in Fig. 8. The resulting low-passed precompensating
filter is shown as a magnitude plot in the space frequency

is computed
13,14
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FI1G. 8. Low-pass spatial filter used to partially suppress some of the more
extreme Gibbs oscillations. The spatial frequency domain origin may be

taken to be at the lower left corner. The highest spatial frequencies in both

the x and y direction are located at the center of the hole and are 10.0 2",

respectively. Negative spatial frequencies are reflected symmetrically in the
figure about its center as is the usual case when using FFT software.

domain in Fig. 9. The corresponding picture of H (x, y) for
Fig. 9 is shown in Fig. 10.

Figure 11 shows the FP corrected applied dose (without
the additive offset). After Haar processing we obtain Fig. 12
for the thinned precompensated dose. The plan views of
these two pictures showing the regions of constant dose are
shown in Figs. 13 and 14, illustrating the amount of data

.’
Y
>

i,
i N

W‘: M“m i
’ez~.~e--.~a:'~.~

FIG. 9. Low-pass filtered precompensation filter H (@,,@,) corresponding to
H (x, y) shown in the spatial frequency domain using the same coordinate
system used in Fig. 8.
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Fi1G. 10. Two-dimensional inverse FFT of Fig. 9 showing H (x, y). Note the
large dynamic range implied.

FiG. 11. The FP corrected applied dose shown in the spatial domain corre-
sponding to Fig. 4 (with no additive offset or thinning).

F1G. 12. Result of Haar thinning of the precompensated dose shown in Fig.

11.
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Fi1G. 13. The plan view of the unthinned FP applied dose of Fig. 11, showing
regions of constant dose, 0.1 4 resolution. The outer square in this and all
subsequent plan views is 8.00 4 on a side.

‘base reduction possible using the 2D Haar transform. Addi-
tional improvements in the thinning strategy may reduce
this complexity even further. The net exposure resulting
from the thinned precompensated dose is shown in Figs.
15(a) and 15(b). These can be compared with Figs. 6(a} and
6(b).

Now for many of the currently available commercial elec-
tron beam systems the applied dose must be further quan-
tized to 4 or 5 bit numbers with a separate exposure pass
required for each bit plane. Figure 16 shows the thinned,
quantized precompensated applied dose using 4 bit quanti-
zation (16 possible dose levels). The plan view corresponding

jJ_H = JE _ F

N

|

n

F1G. 14. The plan view of the thinned applied dose with o, set to reject all but
0.2 u sized basis functions.
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(b)

F1G. 15. {a) Net exposuire resulting from the thinned FP applied dose shown
in Fig. 12 (front view) corresponding to Fig. 6(a). (b) Net exposure resulting
from the thinned FP applied dose shown in Fig. 12 (rear view) correspond-
ing to Fig. 6(b).

to this figure is Fig. 17 which shows the additional dose sim-
plification which can result fromn this quantization. Finally,
Fig. 18 shows the degradation of the net exposure resulting
from quantization. Figure 19 shows the most complex bit
plane (2°) for Fig. 17.
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FIG. 16. Thinned precompensated applied dose quantized to 4 bits.

VIl. CONCLUSIONS

A procedure for implementing the 2D FP proximity cor-
rection method for patterns of large size has been described
which utilizes the principle of linear superposition and the
overlap-and-add method for stitching. The precompensated
dose is then thinned using the 2D Haar transform using the
least mean-square error as an error monitor. An ad hoc edge
transition taper had been introduced for minimizing Gibbs
oscillations, especially the negative excursions. The design of
a truly optimal edge taper and the optimization of the low-

ISl

F1G. 17. Plan view corresponding to Fig. 16.
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F1G. 18. Degradation caused by 4 bit quantization (front view).

pass characteristics of the spatial filter are now seen to be of
paramount importance in controlling the residual Gibbs os-
cillation and hence the complexity of the resulting thinned
and quantized data base. We have also observed that these
techniques can be used effectively to deal with patterns con-
taining highly periodic features such as memory cells.
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FI1G. 19. Most complex bit plane—the second lowest bit (2!)—of the four bit
planes corresponding to the dose of Fig. 17 plus an offset for the negative
dose.
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