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A limitation on the quality of electron beam lithography is the proximity effect. This produces
exposure of the resist at locations remote from the point of incidence of the electron beam. One of
the techniques used to mitigate this problem is {o precompensate the applied beam dose.
Traditional approaches to this problem have required extensive calculations which occasionally
fail to produce satisfactory results. However, the proximity correction problem is guite similar to
the edge enhancement problem which arises in pattern recognition. Furthermore, the issue of data
base compaction for the precompensated lithography is quite similar to bandwidth compression
in image transmission. In this paper, we examine the application of image processing methods to
the proximity correction problem. We find that, while the match between these disciplines is not

perfect, the idea appears quite promising.

PACS numbers: 85.40. — ¢

i. INTRODUCTION

Electron beam lithography suffers from the proximity ef-
fect! wherein electron scattering from the resist and the sub-
strate produces some exposure at locations remote from the
point of incidence of the electron beam. The problem be-
comes more severe as the dimensions of the lithographic fea-
tures approach 1 gm or less. The effect becomes most trou-
blesome when features of somewhat different dimensions lie
closely packed in the desired artwork. As a result of intra-
proximity effects, some pattern shapes will be larger or
smalier than desired, some will be separated by insufficiently
wide gaps, and corners will become rounded. In some cases,
some features are lost altogether. Obviously, this seriously
degrades the quality of the lithography in the near-micron
and submicron region.

Various physical methods for reducing the scattered elec-
trons have been considered. An excellent critical review of
the area by Hawryluk? discusses many of these. It has also
been suggested that ion beams can exhibit extremely low
proximity effects.® Mevertheless, it is still of interest to im-
prove electron beam lithography where possible.

Two approaches have emerged to correct for the proxim-
ity effect. One involves adjusting the pattern dimensions®
and the other involves precompensation of the applied beam
dose.” Algorithms for determining the optimum dimensions
or adjusting the dose values require extensive calculations
which occasionally fail to produce satisfactory artwork be-
cause of compromises required by each method. Further-
more, neither of these approaches fully exploits the advan-
tages provided by special purpose computing hardware
{(such as the Floating Point Systems model 164 attached ar-
ray processor) which are commercially availabie.

Of these two traditional approaches to proximity correc-
tion, dose precompensation is the most widely used and un-
derstood. The usual approach is to arbitrarily subdivide a
given region into subregions in which the applied dose is
made constant.® Next, the net effective dose in the resist is
computed at a variety of arbitrarily selected sample points in
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terms of the applied doses. A set of sparse linear equations is
obtained which are solved for the applied doses given desired
effective doses in the resist. In this method, direct control is
obtained over the size of the resulting data base which de-
pends on the partitioning method used to select the constant
dose subregions. However, the accuracy of the result is
weakened by the arbitrary way in which the subregions and
effective dose sampie points are chosen. To keep the com-
plexity of the computation manageable, compromises are
inevitably made.

The alternative approach introduced in this paper is to
initially compute an extremely accurate solution which is
nearly exact. The data base which results is extremely large.
A controlled method of approximating this accurate solu-
tion is then pursued in an effort to compress the data base
and increase the compatibility of the resuiting data with the
beam control system. Interestingly, the approach also makes
excellent use of the fastest computation capabilities available
on attached array processors. The method is fast, accurate,
efficient and may ultimately be optimal.

il. THE IMAGE PROCESSING APPROACH

Kern’ appears to have been the first to recognize the simi-
larity between the proximity correction problem and the
edge enhancement methods used in pattern recognition the-
ory.® Essentially, the distortions imposed by the proximity
effect amount to a loss of high spatial frequency content.
Sharp edges and corners become rounded. Also, features
which are enlarged or diminished during the development
process can be regarded as resulting from incorrect or incon-
sistent developer threshold placement on a smeared effective
dose profile which, in turn, car be modeled as a loss of high
frequency edge definition. Kern observed that proximity
corrections could be obtained by directly compensating the
applied dose for the loss at high spatial frequencies in the
resist in a manner which is analogous to classical methods in
image processing.

For the purposes of this paper, we will limit our attention
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to one-dimensional patterns. Extensions to two dimensions
are straightforward. Essentially, the effective exposure, E (x],
in the resist is related to the applied dose G (x) through a
simpile convolution:

Ex)= f Gx

where F(x) is the point-spread function resulting from an
infinitesimally narrow beam, with that G (x)=8(x}. This
equation is completely analogous to various models of dis-
tortions of images (resulting from finite aperture limitations
in optics, for example). Equation (1} can be regarded as a
Fredholm integral equation for G (x} given a desired E (x).
However, if we permit the limits of integration to be infinite,
then the integral equation has a well known solution which
can be obtained by the Fourier transformation of Eq. (1}:

el jo) = gljolf (o), (2)
where e, g, and f are Fourier transforms for E, G, and F,
respectively. Evidently, if we have a desired dose D (x) and its
Fourier transform is d {jw), then a choice of gljw) given by

F(x" — x}dx’, (1)

s

8. jo) = d jo)/f{jw), {3)
will lead to a compensated exposure e, { jw):

e (jo) = [d (jo)/f(jo)]f{jo) = d{jo). (4)
The applied dose in Eq. {3) is termed Fourier precompensat-
ed.

The solution obtained by forming the Fourier inverse of
Eq. (3), G.{x), is the exact solution for Eq. {1). Another major
advantage of this approach is that the solution involves only
operations which can be implemented on fast special pur-
pose computing hardware. Conceivably, even faster hard-
ware to perform these calculations may be built, as almost
any degree of parallelism is possible for the Fast Fourier
transform algorithm.®

The Fourier Precompensation method is not without its
own peculiar set of deficiencies, however. The most sericus
difficulty is that it tends to produce compensated applied
doses G, (x) which take on negative values at some locations,
and such values cannot be physically realized. The second
problem is that the G {x) contains too much detail resulting
from rapid oscillations. This tends to enlarge the data base
undesirably. Nevertheless, the overwhelming computa-
tional supericrity of this approach suggests that it offers a
good starting point. The next three sections address these
two deficiencies.

IH. CONTROLLING THE NEGATIVE APPLIED DOSE

The negative values observed in the oscillating Fourier
precompensated applied dose are a Gibbs phenomenon re-
sulting from the sharp spatial transitions usually included in
an ideal desired dose. Two features conspire to accentuate
this Gibbs oscillation: the abrupt vertical rise and fall of the
dose function, and the abrupt cessation of this vertical transi-
tion at the upper and lower desired dose values which causes
sharp corners on the function. Kern’ proposed modifying
the desired dose by tilting the vertical transition and beveling
the sharp corners with straight line segments at a still larger
tilt angle. This greatly attenuates the negative dose values,
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but does not eliminate them. He then proposed clipping all
remaining negative excursions of the applied dose at zero.
For some point spread functions, this will prove adequate.
We have found that rounding the corners of the desired
dose rather than beveling them tends to produce even
smaller negative excursions in the ideal applied dose. Var-
ious ad hoc corner rounding fillets have been tried. Splines’®
offer some attractive possibilities in designing optimal cor-
ner rounding fillets. Literally any template which controls
the negative excursion sufficiently, while preserving the ver-
tical walls of the net effective dose, can be considered. How-
ever, we have not found clipping the negative applied dose to
be satisfactory in all cases. Instead, we have found that add-
ing a constant to the applied dose sufficient to guarantee its
positive value is a useful alternative, when used with caution.
Addition of a constant would tend to adversely affect the
on” time of the electron beam. Some form of combined
offset and clipping can reduce this. However, simply reduc-
ing the applied dose to zero in certain areas which are rela-
tively unoccupied by features can also have the same effect.
This wiil be discussed further with the examples in Sec.
VL

V. WALSH TRANSFORM THINNING ALGORITHM

The voluminous detail presented by the Fourier precom-
pensated dose must be reduced to keep the data base mana-
geable and to keep the e-beam control data transfer efficient.
This may be accomplished by an approximation process
which attempts to reduce this detail while preventing the
deterioration of the effective dose. One atiribute of the ap-
proximate dose which improves its match to the e-beam sys-
tem is that it should have the appearance of a step function.
The dose remains constant spatially on one of the steps. At
the very least this reduces the rate with which control infor-
mation must flow to the e-beam. However, for variable shape
spot machines (such as the IBM EL-2) the aperture can be set
to exploit the size of any step.

Orthogonal expansions exist which employ step functions
for their basis set. These are generally termed Walsh func-
tions although distinct sets exist such as the Haar func-
tions.’ ' For the Walsh function two arguments are specified,
the sequency number # and the space variable x {regarded as
a normalized fraction of the maximum length, L ). Discrete
Walsh functions of size N = 2” can be defined in terms of bit
representations of n and x:

WAL{n:x) = WAL(Rp _ 1 s1p_ o 5eslig3 Xp_ 1 X 250000
P—1

= H{_ Dap_ Ax, + X, 4 4)° ©)
r=90

The functions are orthogonal, such that

N—1
S WAL(mx)WAL(n,x) = NG, ,, (6)
x—=Q

and the Walsh transform of a function such as the definition
dose G {x} defined on a set of points x is given by
1 N—-1

= — z G (x)WALfg,x), {7)

where the inverse can be shown to be
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-1

2 g, WAL(g.x), (8)

{i.e., the Wdish transform is identical to its inverse except for
the scale factor NV }.
One of the significant properties of the Walsh transform is
Parseval’s relation:
N-1

— 2 =3 g (%)
N = g=0
This is especially useful to us since the mean square error
produced by deleting all the Walsh coefficients for
g >M — 1 in obtaining an approximation G, (x) to G (x) can
be determined from
N- 1

Gix)— G x) = z g, WAL(gx), (10)

Whlch with the use of Eq. ( } leads to
3 16w = z g (11)
x=0

Hence, we can control the error (in the mean square sense) in
approximating the generator dose resulting from deleting
ass-sEn 1 DY simply summing the squares of these Walsh
coefficients. While the mean square error is not as precise a
measure as the point-wise maximum error, it is still very
useful.

One means for data base compression, therefore, is direct-
1y perceived when the data is stored in the form of its Walsh
coefficients. Note that the remaining Walsh coefficients
which are retained need not be further adjusted as they are
already optimal in the mean square sense. That is, any other
value for any of the coefficients other than that produced
using Eq. (7} can only make the mean square error bigger.

— G x)

V. IMPACT ON THE EFFECTIVE DOSE

The approximation process just described produces a
compaction of the data base, but at a cost of a deviation of the
precompensated dose G, away from the correct answer. We
must establish the impact that this error in the applied pre-
compensated dose has on the net effective exposure E in the
electron resist. We define E ; (x} as the effective exposure re-
sulting from the approximate precompensated dose, G,
produced by the Walsh!? thinning process.

In this section, we will switch from the discrete notation of
the previous section to the continuous space variable x on
[0,L ] since we are interested in the effective dose behavior
everywhere on the resist. In this case,

N--1
= Z g, WALlgx/L), (12)
g="0

where x is viewed as continuous, and WAL{g,x/L ) is zero
outside of [0,L ]. We equivalently form a discrete space of
very high dimensions.

Now the effective dose satisfies Eg. 1. Hence, the mean
square error in the effective dose resulting from thinning is:

?w-—f \Ex) — E, (x)|2dx

= fg_}; |f_m{G<x>«
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From Eq. (10} we can write the following:
. 1 (L
e = — | lhx)%dx, 14
) (x| (14)
where

2 gqf WALlgx'/Lf(x' — xjdx'.  (15)

Now A (x] has a Fourier transform on [ — o0, o0 ] given by

H{jo)= fw 4 (xjexp( — jowx) dx

- 2 8,5 (gjo)F (jo), (16)
where
Z g, jo) = J- - WAL (g.x/L Jexp( — jox)dx, (17)
and o
Fliol= [ Pixlexp( ~joxlds. (i8]

By Parseval’s Theorem

f r’z(x)zdx::—}—j‘ |H {jo)|de. (19)
—w 2rt

Now, note that # (x)is nearly zero outside [0,Z }. Only a smali
spillage occurs outside of this range due to the convolution
with the point spread function in Eq. (15). Hence, we can
make the integral limits in Eq. (14) infinite with only a small
increase in its size

Fol f‘m‘H(ja)}[zdw
= —1—=Jw E (g jo) dw
2l J_
1 w0 5 N1 Zd
——— Fljow Elajo w, 20
| L) (q;w 2,115 (@ >|) .0

where we have used the inequality |x + y|<|x| 4+ y|. Also,
by the same inequality we have the following bound using
Eq. (17):

|Zlgjo)| = U‘ WAL{g,x/L ) expl — jeox) dx’

< f |[WALlg.x/L )| |exp (jwx)|dx

3 (21)

since both the Walsh and complex exponential functions are
bounded in [0,L ] by unity in magnitude. Hence,

ppn f ) |F( jw;’zdw-( Nzl g 5)2‘ (22)
27 J- I \q.—M Sl

Since the first integral is just the energy in the point spread
function we can choose to nermalize the mean square error
by dividing by this factor defining

a<( 3 k). 23

Using the Cauchy-Schwarz inequality this may be further
simplified to
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which shows that the error bound on the resist is a scaled
version of the mean square efror in the generator function
G (x). However, the bound in Eq. (23} is tighter than that of
Eq. (24) and is therefore preferable. Tighter bounds than this
can be written, but they are not as easy to compute. Using
Eq. (23) then the error in the effective dose or exposure can be
monitored as Walsh coefficients are deleted. When the error
bound becomes too large an excursion of the approximated
exposure E  (x) may cross through the region where the de-
veloper threshold is placed causing drop-out or erronéous
features to appear. At this point it becomes necessary to sim-

ulate the convolution Eq. {1) using the FFT as in Eq. (2). This

gives the detailed point-to-point deviation from the correct

answer rather than just the mean square error, but the com-

(24)
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Fi1G. 2. Ideal applied dose, 0.05 ym x-axis scale. A 5.0 um bar adjacent toa
series of 2.0, 1.5, 1.0, and 0.5 pm bars separated by 1.0 m gaps. An isolated
0.52m bar is next with 4.0 2m gaps followed by a tric of 0.5 um bars with 1.0
pm gaps. This is repeated for 1.0 gm bars on the right.
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F1G. 3. Effective exposure absorbed by resist given ideal applied dose in Fig.
2.

putation is obviously much greater than that which is re-
quired to simply evaluate the bound in Eq. {23},

VI. COMPUTED RESULTS

In this study we have arbitrarily adopted the point spread
function measured by Chang’ for 0.6 u thick PMMA on a
silicon substrate with a beam acceleration voltage of 25 keV.
For this case the double Gaussian form applies:

F(x) = Ciexp( — x*/B}) + Coexp( — x*/B}), (25)
where the first term is due to forward electron scattering in
the resist and the second is due to backscattered electrons
from the substrate. This is plotted in Fig. 1.

Figure 2 shows a conventional dose for a typical one-di-
mensional mask which consists of bars of various widths and
spacings. In this figure as in all others the desired dose is
normalized to unity. Left uncorrected, the effective exposure
E (x) is shown in Fig. 3.

The problems which arise when using this effective dose
or exposure include: (a) the failure of the effective dose to rise
and fall to uniform peak levels; (b) the rounding of the sharp
edges of the desired dose which creates different sized fea-

PLOT(860) MDPCL)
83.10.10 - 12:41:35

3750, y—

2800,

1280.

—-1250.

-2500.

FiG. 4. Fourier precompensated dose given desired dose in Fig. 2.
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F1G. 17. IBM EL-2 direct-write electron beam lithography system. (Located
at the Rensselaer Center for Integrated Electronics.)

tures depending on the developer threshold. By varying this
threshold some features with effective dose below the thresh-
old will not develop at all, while some which are above the
threshoid will begin to merge and eventually disappear alto-
gether.

Fourier precompensation of the unrounded desired dose
produces the applied dose inn Fig. 4. This oscillates with very
large {three orders of magnitude larger than the desired dose}
amplitude excursions near the vertical transitions of the
original desired dose. Clipping the negative dose for this os-
cillation produces unacceptable results as does the addition
of a constant because the constant would have to be too large
thereby masking the features completely.

One can attempt to minimize these oscillations by reatten-
uating some of the high freguency components which the
precompensation process has amplified. Figure 5 shows a
multiplicative window in the frequency domain with a high
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frequency roll-off tapered to minimize spatial oscillations
using techniques of digital filter design.® The resulting ap-
plied dose appears in Fig. 6. Its relative magnitude has been
reduced to the same range as the original desired dose. Add-
ing a constant offset sufficient to guarantee a non-negative
dose produces the resulting effective dose of Fig. 7.

To further control the negative dose excursions a bevel
suggested by Kern’ is introduced onto the desired dose as
shown in Fig. 8, producing the applied dose in Fig. 9. Con-
volving with the point spread function gives the effective
dose of Fig. 10. There is some corner rounding present and
the threshold range containing missing features is a problem.

i instead of a bevel, a corner rounding fillet is employed at
each step in the desired dose such as shown in Fig. 11, then
the desired dose is shown in Fig. 12, the applied dose be-
comes Fig. 13. With offset addition the resulting net effective
exposure becomes that of Fig. 14.

To simplify the data base a Walsh thinning process {(which
removed 75% of the coefficients) followed by guantization
produces the applied dose shown in Fig. 15, and its effective
exposure in Fig. 16. The degree of success achieved by the
Walsh thinning process in reducing the data base (in the
transform domain) is strongly dependent on the minimum
feature size sought and the width and shape of the point
spread function. In this case the minimum feature size is 0.5
u while the point spread function contains a backscatier
component several um in width.

The Walsh transforms set probably does not represent the
ultimate image processing transformation. Other transform
function sets, specifically the Haar, are known to produce
more powerful compressions, and these remain to be exam-
ined.

Vii. EXPERIMENTAL RESULTS

A series of experiments have been recently initiated to
verify this approach to proximity correction. The experi-
ments employ the IBM EL-2 electron beam lithography tool
{Fig. 17} at Rensselaer’s Center for Integrated Electronics
which operates at a beam voltage and current of 25keV and 2
A, respectively. Typicaily, | ym-thick films of IBM Terpo-
lymer and PMMA. resists were used. The vehicle used for
proximity correction experiments, shown in Fig. 18, consist-
ed of two pairs of rectangles separated by a space. The right
pair received an uncorrected dose, while the left pair was

Fic. 18. Proximity correction using
Walsh transform for pattern in terpo-
lymer electron resist. Magnification is
i.1x 10* The bar on the left is proximity
effect corrected. The bar on right is un-
corrected.
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corrected as discussed herein. Varied doses for correction
were achieved by rewriting portions of the pattern utilizing
the variable spot shaping and variable dose capabilities of the
EL-2. In some cases, large effective doses were obtained by
repeated exposure of a given area to small electron doses.

The initial experiments concentrated on obtaining more
vertical resist properties from the corrected exposure levels.
Figure 18 shows a SEM photograph (11 000 X ) of an uncor-
rected Terpolymer pattern. The bar separating the two rec-
tangles exhibits a nonuniform profile with a “skirt” evident
at the bottom of the bar. The bar in the left hand pattern has
been obtained with a compensated dose which removed the
skirt by increasing the dose at the edge of the pattern. The
normal widih of both bars is 0.4 um, but the skirt effectively
doubles the width of the uncorrected bar. A similar effect is
observed in PMMA as shown in Fig. 19.

Viil. CONCLUSIONS

A dose adjustment technique for proximity correction has
been examined which exploits a combination of Fourier pre-
compensation (as suggested by Kern} corner rounding to
minimize negative dose excursions, offset addition to cancel
the remaining negative excursions, and Walsh transform
“thinning” to compress the data base.

Criteria for estimating the effective dose error resulting
from Walsh transform thinning have been discussed. Effects
of dose quantization were simulated, and results of experi-
ments using the IBM EL-2 were presented.

The conclusions of this study are: (a) the new approach
appears computationally advantageous; {bj the data base can
be made efficient.
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F1G. 19. Proximity correction using
Walsh transform for pattern in FMMA
clectron  resist. Magnification is
1.1 X 10% Proximity effect corrected bar
and uncorrected bar on left and right,
respectively.
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