
1

Vol.:(0123456789)

Scientific Reports |         (2022) 12:2808  | https://doi.org/10.1038/s41598-022-06723-5

www.nature.com/scientificreports

Comparative analysis 
of genome code complexity 
and manufacturability 
with engineering benchmarks
Joseph Riolo & Andrew J. Steckl*

When knowledge has advanced to a state that includes a predictive understanding of the relationship 
between genome sequence and organism phenotype it will be possible for future engineers to design 
and produce synthetic organisms. However, the possibility of synthetic biology does not necessarily 
guarantee its feasibility, in much the same way that the possibility of a brute force attack fails to 
ensure the timely breaking of robust encryption. The size and range of natural genomes, from a few 
million base pairs for bacteria to over 100 billion base pairs for some plants, suggests it is necessary to 
evaluate the practical limits of designing genomes of similar complexity. This analysis characterizes 
the complexity of natural genomes, compares them to existing engineering benchmarks, and shows 
that existing large software programs are on similar scale with the genome of complex natural 
organisms.

It took a hundred years from the advent of the term “synthetic biology”1,2 to the modern confirmation of its 
essential technologies when, in 2010, researchers at the J. Craig Venter Institute (JCVI) created a synthetic 
Mycoplasma mycoides genome and transplanted it into a recipient Mycoplasma capricolum  cell3. Mycoplasma 
genitalium was originally selected because, at the time, it had the fewest genes of any known organism capable 
of independent growth but Mycoplasma mycoides and Mycoplasma capricolum were later selected for their faster 
growth rate. The creation of a viable bacteria cell controlled by a synthetic genome (JCVI-syn1.0) ushered in an 
era where scientists and engineers intend to produce artificial life forms for their own purposes and represented 
a major break from genetic engineering that was initially focused on modifying existing organisms. Synthetic 
biology is a discipline that “uses engineering principles to design and assemble biological components”4. Sim-
ply stated, synthetic biology aims to use the knowledge that sequencing of the genome of species has provided 
(the biological code) to manufacture biological components. Synthetic biology has the potential to be the next 
epochal technological human advancement following microelectronics and the internet. The potential of syn-
thetic biology has been recognized by many organizations, from being highlighted as a top technology by the 
World Economic  Forum5 to being included on the list of "Big Ideas for Future Investments" of the US National 
Science Foundation (NSF)6. This high level of emphasis, including major research stimulus by NSF in 2019 to 
understand the “Rules of Life”7, has resulted in significant practical and academic advancements, such as genome 
rewriting for streamlined  synthesis8.

Based on his experiences Venter observed that the “genome design’s greatest limitation” is the lack of funda-
mental  knowledge9. It is unclear at this time if a predictive understanding of organism phenotype will ever be 
realized but, if the necessary knowledge is gained, it seems likely that practical applications of synthetic biol-
ogy would be enabled by technologies such as abstraction, standardization, and  decoupling10. The presence of 
fundamental knowledge and the availability of appropriate tools does not necessarily guarantee the creation of 
useful synthetic organisms since it has not yet been demonstrated that complexity itself is not a limitation. Is it 
practical to design large scale synthetic organisms or is comprehensive genome design too complex for economic 
usefulness? The objective of this analysis is to begin a discussion on the feasibility of potential synthetic biology 
undertakings by establishing metrics against which genome complexity and manufacturability can be measured. 
Software (the current human coding champion) in its compiled form and semiconductor manufacturing have 
been selected as the yardsticks for comparison. Large scale software programs are increasingly being developed 
for all aspects of life from automotive entertainment to aerospace controls and financial systems to weather 
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prediction. Indeed, with the advent of the “internet-of-things”, digital programming is destined to become the 
ubiquitous communication and control sinew of mankind. While the study presented here is not quantitative 
in the sense of providing an expected timeline for synthetic biology breakthroughs it may provide a qualitative 
assessment of feasibility in a manner similar to how a brute force encryption vulnerability assessment would 
determine if a key could be broken in a reasonable  time11. As illustrated in Fig. 1, our analysis indicates a rough 
equivalence in complexity between various major engineering systems and the human genome.

Results
Selecting suitable benchmarks for measuring genome complexity. The sequence of nucleotides 
in a genome is commonly referred to as its genetic code which, for electrical and software engineers, is immedi-
ately reminiscent of computer object code. Object code is the output of a compiler that translates source code in a 
high-level programming language into machine useable binary instructions. The characterization of genetic and 
binary digital information as ‘code’ may make comparisons seem  superficial12. However, there are meaningful 
similarities that make software a suitable benchmark and, at the least, more promising than  alternatives13. For 
example, both types of code store data in limited serial instruction sets (quaternary or binary) and can produce 
arbitrarily complex outcomes when executed on deterministic systems. These similarities were not wasted on 
Venter who observed that “DNA is the software of the cell”9. Indeed, the programming and self-assembling func-
tions of DNA have generated great interest for high density information  storage14, biological  computing15,16, and 
nanostructure  formation17,18. Further, the unusual electronic and optical properties of DNA thin films have been 
utilized in a variety of device  applications19,20.

It is important to point out at the outset two key differences between DNA coding and digital coding. First, 
DNA coding regions represent a small fraction of the overall polymer. However, this coding fraction varies 
among species, and it also changes with time as new roles for sections of the supposedly non-coding regions are 
being discovered. In this initial assessment of biological vs digital coding including the entire DNA sequence in 
the comparison has the advantage of working with “hard” numbers. Furthermore, this approach establishes the 
upper bound of biological complexity, with the possibility of reducing that level as DNA portions are confirmed 
to have no coding significance. Second, the functionality of bioorganisms can be described as bottom-up, dis-
tributed, self-replicating, and non-deterministic, whereas computer system design and functionality is top-down, 
concentrated, not self-replicating (yet), and deterministic. For example, the entire machinery for self-replication 
and functioning of an E. coli bacterium is contained in a volume of one femtoliter. Research is being pursued 
to create self-replicating machines, which could be a more complete analog to biological systems. However, at 
this time they are far from the point where a comparison with biological systems would be meaningful. It will 
be interesting to see if advances in synthetic biology will inform our design of artificial systems in the future to 
be more encapsulated.

Figure 2 explores the parallels between genetic code and object code. Each language is based on a limited 
alphabet (nucleobases and bits) from which words are constructed (codons and bytes) leading to higher level 
organizations (genes and instruction sets). Additional similarities include context dependence, non-obvious 
regions of code, and resiliency to errors. Software is generally considered context independent due to the abstract 
nature of high-level languages and the arbitrary order that functional segments may be provided to compilers, 
but the resulting object code is highly context and platform dependent. Without complete understanding of the 
object code, making changes to individual bits, or even encapsulated functions, would present challenges like 
those experienced by current DNA designers attempting to manipulate base pairs or sequences. Instructions 
would be identified first, similar to our understanding of coding DNA, but compiled object code would also have 
non-obvious regions like graphical textures, audio files, or other large data sets that would be as difficult to reverse 
engineer as noncoding DNA. Programs even have an analog to the C-Value enigma, the observation that genome 
size varies largely between species and has no relationship to the organism’s presumed complexity, with recent 

Figure 1.  Comparison of complexity between the human genome and several major engineering systems. 
Image credits: Hubble and Mars Curiosity Rover: NASA/JPL-Caltech; iPhone: Yutaka Tsutano (CC BY 2.0), 
F-35: MSgt Donald Allen; March of Progress: M. GardeFerdinand (CC BY-SA 3.0).
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program memory requirements exploding despite having similar functional complexity. For example, one game 
might even vary in installed size by nearly 200% (17–49 GB) depending on the platform due to the difference in 
audio file  compression21. DNA and binary code are also susceptible to errors, which occur at an average rate of 
1.28 ×  10–8 mutations per nucleotide per generation for  humans22 and 1 ×  10–14 nonrecoverable read errors per 
bits read for hard  drives23,24. These rates are not directly comparable, but they do necessitate appropriate error 
detection, correction, and redundancy to be built into both biological and digital systems.

While this equivalence between the components of DNA molecules and computer instructions may be an 
oversimplification, it at least provides a starting point for further thought and future more detailed comparisons. 
Even those that object to the metaphor for semantic reasons find the associated tools to be “remarkably useful 
in practice”25. It is interesting to point out that nature has developed the genetic code for each organism and has 
provided the built-in mechanisms for its replication and conversion into function. On the other hand, digital 
software designed for each specific application requires a separate hardware design and fabrication for conversion 
to a desired set of functions. However, here too we can see some similarities in that one can identify the alphabet 
of electronics (resistors, capacitors, transistors) leading to words (memory cells, amplifiers, etc.) and sentences 
(shift registers, etc.) that are joined into complex functioning systems (computers, phones, etc.). The evolution of 
the integrated circuit (Moore’s law) provides another useful yardstick for comparison between the development 
of electronics technology and the technology for genome sequencing and synthesis.

In addition to the similarities between the genome and the object code (binary) produced by a compiler, there 
are likely similarities to future processes for use in the design of synthetic organisms. Specifically, it seems likely 
that a high level abstract organism description language will be necessary along with a biological “compiler” 
to facilitate designs and translate the designers’ intent into a synthetic genome. This organization, shown sche-
matically in Fig. 3, suggests a framework by which observable complexities in natural organisms and large scale 
software projects might be used to infer the feasibility of potential synthetic organism design efforts. Figure 3 also 
contains a simple example of high level software code being compiled into object code and explores how future 
tools might be used to design synthetic genomes based on desired phenotype. Synthetic biologists in training 
may start by coding simple algae similarly to novice software designers starting with the message “Hello world!”.

Figure 2.  Comparison of biological and digital languages.

Figure 3.  Framework for inferring feasibility of synthetic biology by comparing software object code and 
organism genome complexity with associated examples or hypothetical implementations. Image of Earth credit: 
NASA.
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Comparing genome complexity to benchmarks. The combinatorial complexity of a string of binary 
values, Cbinary, is calculated using the number of bits in the string, Nbits (Eq. 1). Using digital combinatorial com-
plexity as a model, genome complexity, Cgenome, is quantified by calculating an equivalent byte value with the 
number of base pairs, Nbp. Since there are four natural nucleobases, each pair of bases (cytosine [C], guanine 
[G], adenine [A], and thymine [T]) has a combinatorial complexity equivalent to two bits (Eq. 2). This can then 
be converted to bytes (and higher order units like gigabytes) to easily understand the magnitude of a genome’s 
complexity. Equations (1) and (2) can be combined to derive the relationship between binary and genome com-
plexity (Eq. 3) as well as the associated ratio of bits and base pairs (Eq. 4). Additionally, one byte is composed of 
eight bits (Eq. 5).

This approach makes genome complexity easily quantified in terms of stored information, or equivalent bytes, 
based on the number of base pairs. Paradoxically, the corresponding software object code complexity is more 
difficult to calculate because most historical engineering projects do not have documentation available for file 
size or physical memory requirements. Typically, the information available is mainly on the number of Lines 
of Code (LOC). One study, using the C programming language, reported an average of 17 ± 3.5 bytes per line 
of  code26. While this is only one study with one language that is not necessarily inclusive of all benchmarks, C 
is a very common programming language and will provide a qualitative comparison. A wide range of software 
benchmarks were selected from available sources across industries, scope, production volume, and time to yield 
the best opportunity for finding equivalent complexity with naturally occurring genomes.

A wide range is necessary since natural genomes vary from as few as thousands of base pairs for some viruses, 
to millions of base pairs for bacteria, and even as high as 100 billion base pairs for some plants. The resulting 
combinatorial complexity of representative examples of natural genomes and selected digital benchmarks is 
shown in Fig. 4. The Porcine circovirus27 has one of the smallest genomes at ~ 1800 bases (not base pairs in this 

(1)Cbinary = 2
Nbits

(2)Cgenome = 4
Nbp

(3)Cgenome (Nbp) = Cbinary (2Nbits)

(4)Nbp = 2Nbits

(5)4Nbp = Nbytes

Figure 4.  Complexity of selected natural organisms (in terms of base pairs) and software benchmarks (in terms 
of equivalent bytes)3,8,27,28,30–40.
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case since it consists of a circular single-stranded DNA molecule in contrast to the other genome examples which 
are double stranded DNA molecules). The genome of the Pandoravirus salinus28 is an example of one the larger 
virus genomes at ~ 2.5 Mbp. By comparison, the genome of the new coronavirus responsible for the COVID 19 
pandemic contains 29  kbp29. Nasuia deltocephalinicola, a bacterium that helps certain insects synthesize essential 
amino acids has the smallest genome of any cellular organism sequenced to  date30, has just ~ 100 kbp, whereas 
Sorangium cellulosum, a cellulose degrading bacterium, has a circular DNA  genome31 of ~ 13 Mbp. In the plant 
category, Genlisea tuberosa has the smallest genome  reported32 at 61 Mbp, while Paris japonica, a plant native to 
the mountainous regions of Japan, contains possibly the largest known  genome33 of all living species at ~ 150 Gbp. 
In the animal kingdom, the nematode Pratylenchus coffeae has one of the smaller  genomes34 of 20 Mbp, while 
Protopterus aethiopicus, the marbled lungfish, comes in a close second to P. japonica for the largest  genome35 
found to date of ~ 130 Gbp. Finally, the genome of our own  species36, Homo sapiens, weighs in at ~ 3.3 Gbp. 
While this is a very large genome, it is not the largest of either animal or plant species. As indicated above, the 
genome of P. japonica is ~ 50 × larger.

The relative complexity of several synthetic organisms is also shown for comparison. JCVI-syn1.0, the first 
reported cell with a chemically synthesized genome, contains approximately 1  Mbp3 and is a modified version 
of the Mycoplasma mycoides bacterium with synthetic ‘watermark’ sequences to differentiate from the natural 
genome. The synthetic M. mycoides cells were reported to have the phenotypic properties of natural cells and to 
be able self-replicate. Researchers at JCVI minimized the Mycoplasma mycoides genome further and tested the 
effects of reorganization on JCVI-syn2.0 with 580 Kbp and JCVI-syn3.0 with 530 Kbp. While all of the JCVI 
species were viable the simpler forms did demonstrate reduced growth rate with a doubling time of 60, 92, and 
180 min for syn1.0, syn2.0 and syn3.0,  respectively37. Caulobacter ethensis-2.0 (C. eth-2.0) is the product of 
recent research at the Institute of Molecular Systems Biology in Zurich, Switzerland that demonstrated synthesis 
optimized sequence rewriting on Caulobacter crescentus, a widely distributed fresh water bacteria and common 
cell cycle  model8. Interestingly, even JCVI-syn1.0, the largest synthetic genome to date, is only about 20% the 
complexity of the pacemaker (4 ×  104 LOC)38 which is the simplest benchmark at just over 1 MB equivalent.

In addition to the pacemaker, several engineering projects with significant software content (for their time) 
were selected to act as benchmarks for the complexity of natural and synthetic organisms. The next three more 
complex projects in terms of lines of code being the Space Shuttle flight control (4 ×  105 LOC)39, the Hubble 
Telescope (2 ×  106 LOC)40, and the Mars Curiosity Rover (5 ×  106 LOC)40, corresponding to 6.8, 34, and 85 MB 
equivalent, respectively. These space applications range in time but their software complexity is somewhat limited 
based on the harsh radiation environment and high reliability requirements. The F-35 environment, which is 
perhaps not as harsh are space, still results in severe requirements limiting software size. However, more recent 
technology and emphasis on the ‘digital plane’ have resulted in a flight control software complexity of 25 million 
lines of  code40 or 425 MB equivalent. Lastly, consumer electronics including cars and phones have experienced 
an explosion in functionality and interconnectivity that have driven their software complexity up to the point 
where your smart phone with its Android OS (1.2 ×  107 LOC)40 can connect to your car (1 ×  108 LOC)40 with 
equivalent complexities of 204 MB and 1.7 GB, respectively. This level of complexity is enabled by the mass 
production and ubiquitousness of these products and will continue to grow with the desire for more integration.

The similarity in complexity between software projects and natural genomes suggests that designing complex 
synthetic biosystems, while quite challenging and requiring major effort, will be feasible once the relationship 
between genotype and phenotype is well understood. Unfortunately, the ad hoc process that has been utilized for 
most synthetic biology research is still the standard mode for current  efforts10. As important as the creation of 
the 531 kbp JCVI-syn3.0 minimal bacterial genome was in  201637, the method of arriving at the genetic sequence 
was empirical and a key factor in the selection of the target organism (M. mycoides) was previous experience 
in synthesizing its complete genome (JCVI-syn1.0)3. The design process is in its infancy but the work on JCVI-
syn3.0 showed that reorganizing modularized genome segments did not observably affect the resulting cells, 
which suggests that the development of standard parts by organizations like  iGEM41 could find wide applicability.

This first order analysis attempts to provide a qualitative evaluation of genome complexity but does not con-
sider all known complexities and cannot consider future breakthroughs on the path to complete understanding 
of the relationship between phenotype and genotype. Therefore, the complexity of natural organisms may be 
somewhat understated because of the absence of epigenetic factors like DNA methylation and histone modifica-
tion. As advanced sequencing technologies, for example single molecule real time (SMRT), provide additional 
information in parallel with the primary DNA  sequence42 these nuances should be weighed against potential 
efficiencies, such as the significant reduction in base pairs observed between JCVI-syn1.0 to JCVI-syn3.0. It will 
be interesting to see if human ingenuity can expand the accessibility of synthetic biology through simplification 
or if mitigating efforts will be overcome by our increasing understanding of the complexities of fundamental 
biological processes.

Evaluating manufacturability of synthetic biology products. Since the 1st order comparison study 
indicates that designing synthetic organisms that approach the complexity of natural examples would be of a 
similar order of magnitude to existing engineering projects the remaining considerations would be engineering 
issues, such as manufacturing methods and cost. After the non-recurring engineering costs necessary to design 
a synthetic organism, the next most significant will be gene sequencing and synthesis. Gene sequencing is the 
process of determining the order of nucleotides in DNA and gene synthesis is the process of creating short 
oligonucleotide fragments and assembling them into a complete genome. Gene synthesis also requires many 
intermediate error-checking and correcting steps that involve multiple sequencing operations. Costs for both 
processes must be considered since a prohibitively high estimate for a complex genome could negatively impact 
the practicality of synthetic biology.
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In addition to the functional similarities between software and genetic code, the sequencing and synthesis of 
genes also appear to be benefiting from significant reductions in cost as a function of time similar to the advance-
ment of semiconductor circuit (“chip”) fabrication that is described as Moore’s Law, namely  the doubling of tran-
sistors per chip every 1.5–2 years while the overall chip cost per unit area has remained more or less  constant43. 
This empirical relationship is consistently reported as about to expire, but to date it has achieved a nearly 50-year 
validity. A corollary of Moore’s Law indicates a roughly halving of cost per transistor every 2  years43. As shown 
in Fig. 5a, DNA sequencing price and cost have closely followed this trend since 2000 except during 2008 when 
sequencing cost dropped precipitously as researchers worked toward the goal of a $1000 human genome to 
facilitate cost-effective personal  diagnostics44.

Figure 5.  Price and cost of DNA sequencing for the 2000–2020 time period (a); price/cost ratio for DNA 
sequencing (b); price and cost of DNA synthesis (c) and comparison to an approximation of Moore’s  Law45,46.
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Price and cost are often used interchangeably in everyday language, but the distinction is critical when consid-
ering production strategies. Cost is the expense incurred by a company to produce and sell a product or service 
and price is the amount a customer is willing to pay for that product or service. Figure 5b shows the sequencing 
price/cost ratio for the two decades from 2000 to 2020. Also shown in Fig. 5b is an extracted simplified time-
dependent linear relationship that was used in conjunction with synthesis price data to estimate a synthesis cost 
in order to obtain a complete picture of the expenses related to sequencing and synthesis. Synthesis price and 
an estimate of cost are shown in Fig. 5c. The synthesis cost is important for consideration, but its classification 
as an estimate is important since Fig. 5a,b show that there may be a discrepancy between the data sets causing 
sequencing price to fall below sequencing cost in the 2006–2009 timeframe or the data may faithfully show 
temporary market conditions driven by liquidation, oversupply, or other factors. While price and cost can vary 
depending on method and number of nucleobases it will be important to consider both depending on applica-
tion just like current microchip designers much choose to fabricate their devices or purchase wafers from an 
independent manufacturer. It will also be interesting to see if the DNA sequencing price and cost continue to 
converge, with the ratio of the two falling from 47 in 2001 to ~ 10 in 2018, as technology advances and com-
moditizes the industry.

Discussion
With the costs of gene sequencing and synthesis dropping precipitously the main manufacturing challenge is the 
manual gene assembly, isolation, and transplantation processes used for current projects. Automation of these 
processes may be complex, but overall, the manufacturing needs for synthetic biology appear to be similar to 
those used for the fabrication of consumer electronics. The similarities to micro fabrication suggest processes 
where a large non-recurring engineering investment up front leads to high throughput, inexpensive manufac-
turing. Synthetic biology also has the benefit of being self-replicating, which could provide additional benefit 
over microfabrication if it can be adapted to contemporary lean manufacturing principles like takt, or cycle, 
 time47,48. These parallels and a potential process overview of a synthetic biology factory of the future are shown 
in Fig. 6. Alternatively, if long gestation and/or adolescent periods seen in complex natural organisms cannot be 
overcome and production steps remain long like additive manufacturing, then there may be opportunities for 
new manufacturing philosophies that better utilize batch  production49.

The comparison of complexity between natural species and major software endeavors makes it clear that 
designing synthetic organisms will be feasible when the fundamental knowledge becomes available. If synthesis 
costs continue to shrink at a rate similar to transistor cost as described by Moore’s law, it is also likely that the cost 
to synthesize genomes of equivalent complexity to even the largest genomes observed in natural organisms will 
be within the reach of government, commercial, and perhaps research organizations by the time this genome/
phenotype linkage is fully mapped out. Advancements in the genome design may even spur additional genome 
synthesis cost reductions similar to those seen in sequencing during the 2008–2010 period. Extrapolation of 
the Moore’s Law gene synthesis estimation shown in Fig. 5c would predict a cost of $0.0003 per base pair in 
the 2021–2022 time period. This would mean that synthesizing an artificial human genome (~ 3.3 Bbp) would 
cost approximately one million dollars and simpler applications like a custom bacterium (~ 13 Mbp) could be 
synthesized for as little as $4000. This combination of surmountable complexity and moderate cost justifies the 
academic enthusiasm for synthetic biology and will continue to inspire interest in the rules of life.

Figure 6.  Comparison of life stages of consumer electronics and synthetic biology products. Image credits: 
Microfabrication: Sandia Labs (CC BY-NC-ND 2.0); Packaging: viagallery.com (CC BY 2.0); Assembly: Uwe 
Hermann (CC BY-SA 2.0); Service Life: Yutaka Tsutano (CC BY 2.0); Synthesis: Oak Ridge Lab News (CC BY 
2.0).
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