Silane silicidation of Mo thin films

T. P. Chow

General Electric Corporate Research and Development, Schenectady, New York 12301 Rensselaer Polytechnic Institute, Integrated Circuits Laboratory, Electrical and Systems Engineering Department, Troy, New York 12181

D. M. Brown

General Electric Corporate Research and Development, Schenectady, New York 12301

A J. Steckl

Rensselaer Polytechnic Institute, Integrated Circuits Laboratory, Electrical and Systems Engineering Department, Troy, New York 12181

M. Garfinkel

General Electric Corporate Research and Development, Schenectady, New York 12301

(Received 4 April 1980; accepted for publication 16 July 1980)

Silicidation of molybdenum thin films has been obtained for the first time from the reaction of molybdenum with silane (SiH₄). Auger electron spectroscopy measurements indicate a uniform MoSi₂ film has been grown. X-ray diffraction data show that films silicidized at relatively high flow rates have a dominant Mo component along with a significant hexagonal MoSi₂ phase. Postreaction annealing in H₂ results in the complete disappearance of Mo with the concurrent increase of various silicide phases (MoSi₂, Mo₃Si₃, Mo₃Si). The growth kinetics were investigated as a function of reaction time and temperature and reactant flow rate. The sheet resistance of the reacted films can be controllably varied between that of Mo and of MoSi₂. Post-silicidation annealing behavior was found to be strongly ambient dependent. Oxidation of the reacted films resulted in a uniform SiO₂ overlayer.

PACS numbers: 81.15. - z, 68.55. + b, 81.40.Rs, 81.60.Dq

INTRODUCTION

Refractory metal silicides are under active investigation as highly conductive interconnect materials for very-large-scale-integrated (VLSI) circuits. Metal silicide thin films have been obtained to data mainly by the following methods: sputtering from the stoichiometric compounds, ^{1,2} coevaporation of the metal and silicon,³ and sequential deposition of the individual components followed by sintering.⁴ In this paper we report on the silicidation of molybdenum thin films. The reaction of SiH₄ gas with Mo films results in the growth of a continuous MoSi₂ overlayer. By this technique it is hoped that one can obtain a self-aligned metal-oxide-semiconductor (MOS) electrode, the so-called "heart-of-Moly", which has both the high conductivity of the metal and the oxidation resistance of the silicide.

EXPERIMENTAL

5981

The experiments performed used oxidized Si substrates. Initially Mo films of 2800 Å were dc Magnetron sputtered using an MRC 603 system. To insure good adhesion, the substrates were preheated for 5 min at 300 °C. A modified Applied Materials AMD 800 Epitaxial Reactor was used for the silicidation process. To prevent oxide growth during the process the system was prepurged with H_2 at room temperature. The reactor temperature was then raised to 1000 °C under cointinuous H_2 flow to provide in situ cleaning of the Mo film surface. Following this step, the temperature was lowered to the reaction temperature in the 600–850 °C range. The reactant mixture used was a 10/90 Si H_4/H_2 calibrated source. The main carrier gas was hydrogen and its flow rate was maintained at 30 1/min throughout.

RESULTS

Auger electron spectroscopy (AES) was used to obtain compositional depth profile of the silicidized Mo film. Figure 1 shows the AES profile of a film reacted for 120 sec at 800 °C under a silane flow rate of \sim 144 cc/min and subsequently oxidized. The profile shows that a uniform molybdenum silicide layer has been obtained. The top SiO₂ layer grown out of the silicide is also quite uniform and the SiO₂-silicide interface appears abrupt.

X-ray diffraction measurements were done with a Siemens D 500 Automated Power Diffractometer to investigate the structure of the reacted films. Three samples were

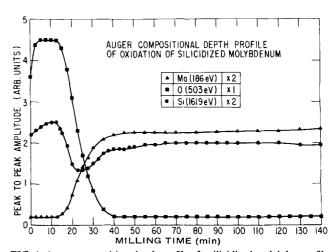


FIG. 1. Auger composition-depth profile of a silicidized molybdenum film which was subsequently oxidized.

TABLE I. Examination of diffraction peaks obtained from 2800-Å-thick Mo film which was silicidized with 10% SiH₄ (143.5 cc/min) at 800 °C for 60 sec (sample B).

Experimental d (Å)			Mo	ä	h-MoSi ₂ ^b				t-MoSi ₂ °		Others
	I/I_m	d (Å)	I/I_m	hkl	d (Å)	I/I_m	hkl	$d(\mathring{\mathbf{A}})$	I/I_m	hkl	Others
3.976	40		·	·	3.98	10	100				
3.399	117				3.37	50	101	3.92	45	002	
3.102	12				3.37	30	101				G'(t t t v)
2.966	7							2.06	0.5	101	Si(111) ⁽¹
2.527	42				2.53	25	103	2.96	95	101	
2.448	6				2.33	23	102				34 01 1000
	v				2.359	16	110				Mo ₅ Si ₃ (002) °
2.296	28				2.339	10	110	2.27	70	110	
2.220	1000	2.225	100	110				2.26	70	110	
2.167	337	2.223	100	110	2.160	100					
2.026					2.169	100	111				
1.989	6							2.02	100	103	
.707	26				1.992	16	200				
								1.96	40	[004	
012	_							**>0	10	1112	
.912	5										Si(220) d
.881	84				1.882	40	112				• •
								1.60	30	220	
.582	6				1.584	6	113				
		1.574	21	200							
.513	9				1.511	6	104				
								1.40	20	[114	
								1.48	20	1202	
.467	1.4				1.460	20	***			[105	
.407	14				1.468	20	203	1.41	25	211	
.367	9				1.369	10	212			(211	
.331	13				1.331	16	114				
					1.551	10	117	1.308	16	006	
.300	11				1.298	16	301	1.508	10	Wo	
.284	8	1.285	39	211	1.230	10	301				
,	U	1.200	37	211				1 257	46	212	
.241	6							1.257	45	213	
.229	8				1.220	10	202	1.241	10	204	
.148	8				1.229	10	302				
					1.147	10	220			(117	
133	8				1.138	10	115	1.132	30	[116	
		1 1107		220				•		1220	
100	30	1.1127	11	220							
.109	38				1.107	4	214				Si(422) ⁽¹
.089	7				1.090	6	006	1.088	8	222	
										[301	
.057	4							1.057	12	107	
										215	
.043	6				1.046	4	312			(-10	Si(511) d
028	6				1.030	6	304				24(244)
015	22				1.017	20	223				
					1.017	20	225	1.012	25	206	
		0.9952	17	310				1.012	23	200	
.985	3	0.2702	• /	510	0.000	•	215				
.910	3	0.000	7	222	0.988	2	215				
.710	3	0.9085	7	LLL							

^aStandard powder diffraction pattern 4-0809.

studied: (1) a Mo film reacted at a low SiH_4 flow rate, sample A in Fig. 3; (2) a Mo film reacted at a high flow rate, sample B in Fig. 3; (3) a film reacted under the same conditions as sample B and then annealed in H_2 for 45 min at 1000 °C, sample C in Fig. 6. The actual x-ray diffraction data for samples B and C are tabulated in Tables I and II, respectively. The salient features of the x-ray experiments are highlighted in Fig. 2. The film silicidized at low flow rate is com-

posed almost entirely of Mo with only a minute amount of hexagonal MoSi₂ (h-MoSi₂) present. At a higher reactant flow rate, Sample B, the Mo peak still dominates but a substantial increase in the h-MoSi₂ concentration is observed. Annealing the silicidized film, sample C, resulted in a drastic phase change. The Mo peaks are now completely absent and three other molybdenum silicide phases are observed: t-MoSi₂, Mo₅Si₃, and Mo₃Si. The formation of these silicides

^bStandard powder diffraction pattern 17-917.

Standard powder diffraction pattern 6-0681.

^dPeaks from silicon substrate, which is 2 to 3 ° off (111).

Standard powder diffraction pattern 17-415.

TABLE II. Examination of diffraction peaks obtained from 2800-Å-thick Mo film which was silicidized with 10% SiH₄ (143.5 cc/min) at 800 °C for 60 sec and then annealed in H₂ at 1000 °C for 45 min (sample C).

Experimental d (Å)		t-	MoSi ₂ a			Mo ₅ Si	ь 3	Mo ₃ Si ^c			Others
	I/I_m	d (Å)	I/I_m	hkl	d (Å)	I/I_m	hkl	d (Å)	I/I_m	hkl	
3.918	459	3.92	45	002							
								3.46	18	110	
3.234	54				3.23	20	211				or a said
3.119	58										Si(111) d
3.042	47				3.04	20	310				
2.963	956	2.96	95	101							
2.451	847				2.443	10	002	2.45	17	200	
					2.406	10	400				
2.345	23				2.342	60	112				2.0
2.307	120										? *
2.264	562	2.26	70	110							
2.185	176				2.174	20	202	2.19	100	210	
2.152	23				2.149	60	420				
2.107	49				2.102	50	411				
2.025	1000	2.02	100	103				2.00	45	211	
1.990	69				1.986	100	222				
1.961	28	1.96	40	[004							
1.901	20	1.90	40	1112							
1.602	15	1.60	30	220				1.74	4	220	
								1.55	5	310	
1.527	18				1.522	10	620				
	110	1.40	20	∫114	1.491	10	512				
1.480	118	1.48	20	202	1.471	10	314				
					1.437	2	541				
1 400	00	1.41	25	∫105					1.41	18	222
1.409	99	1.41	25	211					1.41	10	222
1.385	19				1.395	10	323				
					1.376	10	631				
					1.363	10	532				
								1.36	32	320	
						*0	[602				
1.339	24				1.339	20	413				
1.304	24	1.308	16	006				1.31	21	321	
1.254	225	1.257	45	213							
1.238	20	1.241	10	204							
1.225	101	1.271	10	204				1.22	17	400	
s . 2. 2. 2	101				1.169	10	642	1.22	• '	.50	
					1.107	.0	0 12		_	[411	
								1.15	2	330	
				[116						(330	
1.130	141	1.132	30	220							
1.086	26	1.088	8	222							
		1.000	ō	(301							
1.066	29 67	1.057	12	107							? °
1.058	67	1.057	12	107							<i>!</i> -
1.055	51			215							? °
1.055				•							?° ?°
1.043	24 92	1.012	26	206							' "
1.013	92	1.012	25	206							

[&]quot;Standard powder diffraction pattern 6-0681.

5983

is the result of the reaction of the h-MoSi₂ and Mo. Similar results have been reported⁵ in the reaction of silicide-coated bulk Mo.

The growth kinetics were investigated as a function of reaction time and temperature and reactant flow rate. In Fig. 3, the sheet resistance of films reacted at 800 °C is plotted as a function of reaction time for two SiH₄ flow rates. Prior to any reaction, the sheet resistance measured was 0.33 Ω / \Box indicating a resistivity of $\sim 10\,\mu\Omega$ cm. At the lower flow rate a slight increase in R_s was observed for a reaction time up to 2 min. This is consistent with the x-ray data which indicated

the formation of only a minute amount of $MoSi_2$ under these conditions. However, at the higher flow rate of ~ 144 cc/min the sheet resistance increased more rapidly, effectively tripling after ~ 100 sec. An even more rapid increase was observed beyond 100 sec reaction time. For 120 sec, an R_s of $\sim 1.6 \Omega$ / was measured which approaches the sheet resistance of sputtered $MoSi_2$ films of a thickness approximately equal to that of the initial Mo film. The flow rate dependence of the reaction was investigated over a SiH_4 flow rate range up to 250 cc/min. As shown in Fig. 4, the R_s of the reacted films inreased linearly with flow rate over this range.

^bStandard powder diffraction pattern 17-415.

Standard powder diffraction pattern 4-0814.

^dPeak from silicon substrate, which is 2 to 3 ° off (111).

^{&#}x27;Not identified.

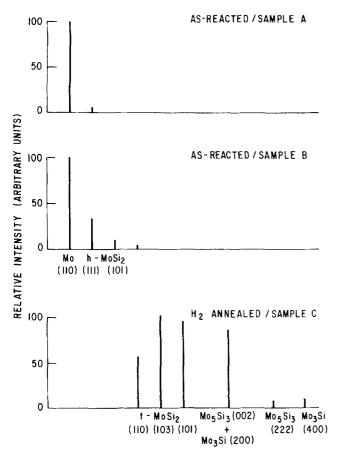


FIG. 2. X-ray diffraction peaks of as-reacted and annealed silicidized Mo films.

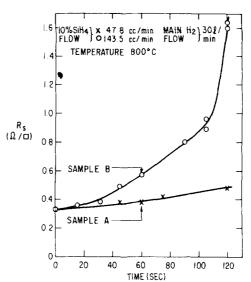


FIG. 3. Sheet resistance of silicidized molybdenum films as a function of reaction time.

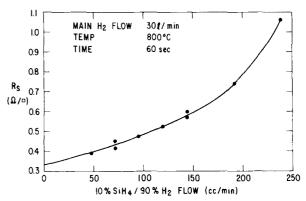


FIG. 4. Sheet resistance of silicidized molybdenum films as a function of silane flow rate.

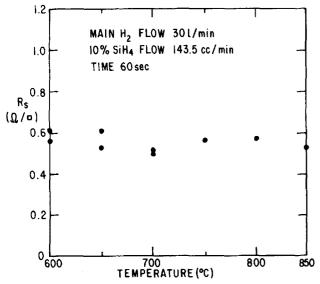


FIG. 5. Sheet resistance of silicidized molybdenum films as a function of reaction temperature.

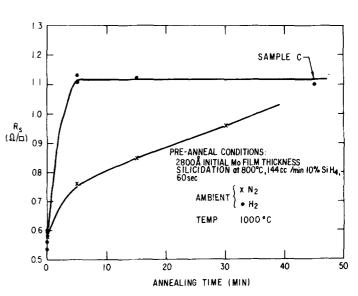


FIG. 6. Sheet resistance of annealed silicidized molybdenum films as a function of anneal time.

J. Appl. Phys., Vol. 51, No. 11, November 1980

5984

Chow et al.

5984

This indicates that MoSi₂ growth in this range is mass transfer rate limited. This was also confirmed by the "loading" effect observed when films on multiple substrates were simultaneously reacted.

The dependence of the sheet resistance on reaction temperature is illustrated in Fig. 5. In the temperature range investigated, 600-850 °C, only slight variation in R, was observed for a 60-sec reaction time and a reactant flow rate of ~ 144 cc/min. Under these conditions, the reaction rate is apparently not the determining factor in silicidation process.

The effect of annealing on the sheet resistance of partially silicidized films is shown in Fig. 6. Samples which had been reacted for 60 sec at 800 °C and a 144 cc/min SiH₄ flow rate were annealed in H₂ and N₂ ambients at 1000 °C. In the case of N_2 anneal, the R_s showed a gradual increase in the first 5 min of annealing. Subsequent anneals up to 45 min resulted in no further increase. In the x-ray data shown earlier (for sample C) no Mo is left after the 45-min anneal in H₂.

This is consistent with the sheet resistance measurements of $R_s > 1 \Omega / \square$, which is typical of silicide films.

CONCLUSION

In conclusion, the silicidation of Mo thin films has been shown for the first time. The reaction of SiH₄ with Mo films was shown to be controllable over a wide SiH₄ flow rate range and to result in uniform MoSi, films.

The authors gratefully acknowledge F. Bacon for performing the AES experiments, R. Goehner for x-ray diffraction, and D. H. Bower for the Mo sputtering.

¹T. Mochizuki, K. Shibata, T. Inoue, and K. Ohuchi, Jpn. J. Appl. Phys. 17, Supplement 17-1, 37 (1977)

²T. P. Chow and A. J. Steckl, Appl. Phys. Lett. 36, 297 (1980).

³B. L. Crowder and S. Zirinsky, IEEE Trans. Electron Devices ED-26, 369

⁴S. P. Murarka and D. B. Fraser, J. Appl. Phys. 51, 342 (1980).

⁵R. W. Bartlett, P. R. Yage, and P. A. Lanssen, Trans. Met. Soc. AIME 230,