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Demonstration of a visible laser on silicon using Eu-doped GaN thin films
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We report the demonstration of visible laser action on silicon. We have utilized Eu-doped GaN for
the active medium within a structure consisting of multiple AlGaN layers grown by molecular-beam
epitaxy on a Si substrate. Stimulated emission was obtained at room temperature from Eu3+ at
620 nm, with a threshold of �117 kW/cm2. Values of modal gain and loss of �100 and 46 cm−1

were measured. This demonstration indicates that utilizing rare earths a range of lasers on Si can be
obtained, covering the UV, visible, and IR regions, thus enabling a significant expansion of
optoelectronic and microelectronic integrations. © 2005 American Institute of Physics.
�DOI: 10.1063/1.2037867�
The use of light for improving the performance and flex-
ibility of silicon microelectronics has been an elusive goal
for many years. Conventional Si �as used in microelectron-
ics� is not a suitable light-emitting material since it has an
indirect band gap and significant absorption at visible wave-
lengths. Therefore, a variety of Si modifications and combi-
nations with other materials that are better light emitters are
being investigated.1 Recently, lasing on Si-on-insulator �SOI�
substrates has been reported2,3 at infrared �IR� wavelengths
�1.67 �m� using the stimulated Raman scattering �SRS� ef-
fect by optical pumping �at 1.54 �m�. Electrically pumped
SRS lasing at IR wavelengths ��9 �m� has been very re-
cently reported4 in compound semiconductor �InGaAs/
InAlAs� heterostructures grown by molecular-beam epitaxy
�MBE� on InP substrates and operated at low temperatures.
This combination of results naturally leads to the consider-
ation of obtaining lasing on Si by the heterogenous integra-
tion of compound semiconductors on Si substrates. To pro-
duce lasing at visible wavelengths by this approach requires
the use of wide band-gap semiconductors such as the III-N
family �GaN/AlN/InN�. Previously, lasing from GaN-on-Si
structures has been reported5,6 at ultraviolet �UV� wave-
lengths �368 nm� by optical pumping �at 337 nm�. Here we
report the demonstration of visible laser action on silicon. We
have utilized Eu-doped GaN for the active medium within a
structure consisting of multiple AlGaN layers grown by
MBE on a Si substrate. Stimulated emission �StE� was ob-
tained at room temperature from Eu3+ at 620 nm, with a
threshold of �117 kW/cm2. The values of modal gain and
loss of �100 and 46 cm−1 were measured. This demonstra-
tion indicates that a range of rare-earth- �RE� based lasers on
Si can be obtained, covering the UV, visible, and IR regions,
thus enabling a significant expansion of optoelectronic and
microelectronic integrations.

RE-based light emitters are very versatile, being utilized
in many applications7 ranging from fiber-optic amplifiers to
solid-state lasers to display phosphors. Excited rare-earth
elements8 �such as Eu, Er, Tm, and Tb� exhibit sharp emis-
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sion lines from the UV to the near IR. In general, since these
are inner-shell �usually intra-4f� transitions the emission
wavelengths vary only slightly with the host and are nearly
completely temperature independent. The excitation effi-
ciency and emission linewidth do depend on the quality �pri-
marily crystallinity� of the host material. The III-N family of
wide band-gap semiconductors �primarily GaN and AlGaN�
has been shown9 to be excellent hosts for RE emission. We
have recently reported10 the evidence for stimulated emission
from Eu-doped GaN structures fabricated on sapphire sub-
strates. The growth of GaN structures lacks a native sub-
strate, with sapphire and SiC being the most widely utilized
alternatives. The growth of high-quality GaN thin films on Si
substrates has obvious advantages of scale, cost, and the
promise of revolutionary increase in functionality. However,
to be successful GaN-on-Si heteroepitaxy has to overcome
the twin challenges of lattice and thermal-expansion mis-
match. We have utilized Si �111� substrates,11 which
incorporated12 several AlGaN and AlN thin films as buffer,
strain compensation, and bottom optical cladding layers. A
0.5-�m GaN active layer doped with �1-at. % Eu and an
AlGaN top cladding layer were grown on the Si substrates.
The entire structure forms a planar waveguide.

To demonstrate laser action, we used optical pumping
with a pulsed N2 laser ��=337.1 nm, 600-ps pulse�. The la-
ser beam was incident on the top surface of the waveguide
structure and the edge emission was collected to analyze the
characteristics of emitted light. Fig. 1 shows the Eu �red�
edge emission under pumping conditions of 8 MW/cm2. The
red emission is due to the dominant intra-4f transition �5D0

→ 7F2� of trivalent Eu3+ ions. The peak emission wavelength
is 620 nm, which is the same as that obtained9 from GaN:Eu
stimulated emission on sapphire substrates. GaN:Eu grown
directly on conventional Si substrates exhibits13 spontaneous
emission at 621 and 623 nm under optical and electrical ex-
citations, respectively.

The edge emission displays the properties of stimulated
emission, including strong gain, threshold effect, polarization
dependence, and emission line narrowing. The variable stripe

14 15
length �VSL� and shifting excitation spot �SES� tech-
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niques were used to obtain gain and loss properties, respec-
tively.

As shown in Fig. 2, the modal gain was measured as a
function of pump peak power density using the VSL tech-
nique. At pump power levels above a certain threshold level,
StE and positive gain values are obtained. In our measure-
ments, gain increases linearly with pump power up to a few
MW/cm2, beyond which gain saturation is observed. The
maximum gain measured is �95 cm−1 at 8 MW/cm2. Using
curve fitting in the linear gain region, we have extrapolated
the pump power threshold for StE of �117 kW/cm2. Below
threshold, spontaneous emission �SpE� is observed and nega-
tive gain values are measured, indicating that in this pump
power regime the VSL technique measures the wave-
guide loss in the structure.16 The negative gain values
��50 cm−1� measured by VSL are comparable to those ob-
tained from SES loss measurements ��46 cm−1�.

In contrast to amplified spontaneous emission, stimu-
lated emission can be identified by several properties, includ-
ing polarization of emission, spectral line narrowing, and
resonant-cavity modes. Figure 3 shows that emission from a
Eu-doped GaN planar waveguide possesses all the character-
istics of laser action. The spectra contained in Fig. 3�a� indi-
cate the polarization dependence of the stimulated edge
emission above threshold ��8 MW/cm2�. The laser emis-
sion is polarized in the plane of the active layer, with the TE

FIG. 1. �Color online� Stimulated emission from the edge of the GaN:Eu on
Si Lasing structure. Insert shows cross section of the structure.

FIG. 2. Gain and loss as a function of peak pump power density for a

GaN:Eu on Si laser structure.
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mode emission being �10� higher than the TM mode emis-
sion. Figure 3�b� shows the emission spectral linewidth as a
function of input peak power density. The FWHM �full width
at half maximum� of the emission peak below threshold is
�2.3 nm, dropping to �1.9 nm above threshold. Finally,
Fig. 3�c� contains a high-resolution spectrum from the Eu-
doped GaN planar waveguide structure having a 350-�m
cavity length. Above threshold ��73Ith�, an emission spec-
trum with a well-defined mode structure is observed. The
spectrum has peaks evenly spaced at 4 Å, clearly indicating
resonant-cavity modes. The measured FWHM of each mode

FIG. 3. Lasing properties of edge emission from GaN:Eu structure on Si: �a�
polarization dependence of stimulated edge emission spectra above thresh-
old; �b� spectrum line �FWHM� narrowing effect; and �c� high-resolution
spectrum of edge emission from the 350-�m-long cavity below and above
threshold.
is �2 Å, which is limited by the resolution of our spectrom-
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eter. The emission spectrum below threshold ��0.3Ith� ex-
hibits no resonant modes. We have also observed �5.6-Å
mode spacing in the emission spectrum of a shorter cavity
�145 �m�. This corresponds to the free spectral range of this
cavity. The FWHM of the evenly spaced peaks is �2.5 Å.
The combination of all these StE-related factors demon-
strates the presence of visible lasing action on silicon.

In summary, an optical cavity was formed on Si sub-
strates by growing in situ Eu-doped GaN thin films, with
AlxGa1−xN films �of various compositions� serving as clad-
ding and transition layers. The StE threshold for optical
pumping of a �1-at. % Eu-doped GaN sample is
�117 kW/cm2. The StE threshold is accompanied by reduc-
tions in the emission linewidth and significant polarization
dependence of the edge emission. The best values of modal
gain and loss obtained to date on Si are �100 and 46 cm−1,
respectively. We believe that this successful demonstration of
visible laser action on Si could open the way toward the
fabrication of Si photonics chips, which will integrate on a
single Si substrate a range of visible and infrared sources,
conventional waveguide structures, and Si detector technol-
ogy.
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