Alternating current thin-film electroluminescence of GaN:Er

J. Heikenfeld and A. J. Steckl

Nanoelectronics Laboratory, University of Cincinnati, Cincinnati, Ohio 45221-0030

(Received 17 August 2000; accepted for publication 7 October 2000)

Thin-film electroluminescence has been obtained from GaN:Er deposited directly on amorphous dielectric layers. Electroluminescent device (ELD) structures consisting of metal/dielectric/GaN:Er/dielectric were fabricated on p^{+}-Si substrates. In contrast to previous GaN:Er ELDs which used epitaxial growth conditions on crystalline substrates and were operated under direct current bias, these ELDs were operated under alternating current bias. Under bias conditions of 170 peak voltage (V_p) and frequencies of 10 and 100 kHz, the ELDs exhibit a luminance of 50 and 300 cd/m2, respectively. The emission spectra, which originate from Er$^{3+}$ 4f–4f transitions, consist of dominant green emission at \sim537/558 nm accompanied by violet (415 nm) and infrared (1.5 μm) peaks. The violet emission peak indicates that hot carriers can gain up to \sim3 eV energy for a V_p corresponding to 1.5 MV/cm applied field. The emitted intensity initially increases linearly with frequency, followed by a trend towards saturation. The frequency for 3 dB reduction from the linear relation is at \sim65 kHz for the visible emission and \sim8 kHz for the infrared emission.

The next generation of flat panel displays (FPDs) is seeking to provide advances in brightness, efficiency, color purity, resolution, scalability, reliability, and reduced cost. One such technology is thin-film electroluminescence (TFEL) of inorganic phosphors. TFEL displays can provide high brightness (\sim150 cd/m2), outstanding durability and reliability (only 10% brightness loss at \sim50 000 h). Current inorganic TFEL phosphors are composed of II–VI wide band gap semiconductor (WBGS) hosts (ZnS, SrS) which provide hot carriers (>2 eV) which impact excite luminescent centers (Mn, Tb, Ce, Cu). Sufficient hot carrier generation requires high field strengths (>1 MV/cm) exceeding the breakdown field of the phosphor thin film. An alternating current (ac)-biased dielectric/phosphor/dielectric layered structure allows reliable high field operation by current limiting the electrical breakdown of the phosphor layer. Recently, a new full-color TFEL phosphor system based on rare earth (RE) elements incorporated into the III–V WBGS structure has demonstrated high brightness (500–1000 cd/m2) direct current (dc) operation of GaN:Er films grown on crystalline Si and sapphire substrates. GaN incorporates very well the trivalent rare earth ions (Pr, Eu, Er, Tm) and has excellent high field transport characteristics. In this letter we demonstrate ac–TFEL of a dielectric/GaN:RE/dielectric structure. We also report on the deposition of GaN:RE on amorphous substrates and the first demonstration of an “all-nitride” ac–TFEL (using Si$_3$N$_4$ or AlN dielectric layers, and the GaN phosphor).

The electroluminescent devices (ELD) for this investigation into GaN:RE ac–TFEL utilize the basic structure shown in Fig. 1. The structure consists of a p^{+}-Si substrate and the following layers: 300 nm dielectric/600 nm GaN:Er/300 nm dielectric/200 nm metal [indium tin oxide (ITO)]. The dielectrics (Al$_2$O$_3$, AlN, Si$_3$N$_4$, and SiON) evaluated for GaN:Er ac–ELDs have permittivity similar to that of GaN (~8). ELDs with an emitting area of \sim1.8\times10$^{-3}$ cm2 had a corresponding operational capacitance of ~30 pF. This value is close to what is expected under conditions of electrical breakdown for the GaN:Er layer. The focus in this letter is on a ELD structure which uses ~300 nm of radio frequency sputtered Al$_2$O$_3$ dielectric layers. The GaN:Er phosphor is deposited by molecular beam epitaxy (MBE) on amorphous insulators under conditions similar to those previously reported for GaN:Er epitaxy on Si(111) and sapphire. The ac–ELDs were driven with an AVTech 100 kHz, \pm200 V linear amplifier with 50 kΩ output resistance. The luminance values are measured with a Minolta CS-100 Chroma-Meter and a Newport 1830-C optical power meter.

FIG. 1. Diagram of TFEL device structure implemented with polycrystalline thin-film GaN:Er as a green emitting phosphor and an ITO dot contact which defines the area (\sim1.8\times10$^{-3}$ cm2) of emission. The dielectric layers (ε of ~8) capacitively couple an alternating voltage to the GaN:Er phosphor layer (ε of ~8).
The GaN:Er films were deposited at \(\sim 700\,^\circ C \) and are polycrystalline with an x-ray diffraction (XRD) linewidth of 0.174° for the (0002) peak. A scanning electron microscopy (SEM) photograph of the Si/Al\(_2\)O\(_3\)/GaN:Er structure is shown along with the XRD spectrum in Fig. 2. The surface roughness of the GaN:Er film has a strong influence on light outcoupling. Similar to other thin-film ELD structures,\(^9\) the final Al\(_2\)O\(_3\)/GaN:Er/Al\(_2\)O\(_3\)/ITO film stack is subject to significant light piping in the phosphor and dielectrics. Light piping has been reported in similar structures which are opaque at one end (Si) resulting in \(\sim 5\% \) outcoupling efficiency.\(^9\) Improvements in outcoupling efficiency can be achieved by replacing the Si substrate with a mirrored substrate such as Pt-coated alumina.

The GaN:Er ac–ELDs have a strong Er visible emission spectrum as shown in Fig. 3. The spectrum is taken from an ELD operated with a \(\pm 180\, V \), 10 kHz square wave. At 180 peak voltage (\(V_p \)), the peak field applied to Al\(_2\)O\(_3\)/GaN:Er/Al\(_2\)O\(_3\) layers is \(\sim 1.5\, MV/cm \). The two green emission peaks at \(\sim 537/558\, nm \) are essentially identical to those reported for epitaxially grown GaN:Er dc–ELDs and originate from the relaxation of the \(^2H_{11/2} \) and \(^4H_{15/2} \) excited states to the \(^4I_{15/2} \) ground state of Er\(^{3+}\). The spectrum also contains a strong violet peak at \(\sim 415\, nm \) \((^2H_{9/2}) \) and a weaker ultraviolet peak at 389 nm \((^4G_{11/2}) \). This 415 nm emission corresponds to an energy of \(\sim 3\, eV \), indicating that the carrier energy distribution is populated to levels exceeding the requirements\(^10\) for a blue TFEL phosphor \(\sim 2.6\, eV \).

Luminance–voltage measurements at 1 kHz are plotted in Fig. 4(a) for both square wave (100%) and 10 \(\mu s \) (2% duty ratio) pulse wave forms. A 170 \(V_p \), 1 kHz square wave applied to the GaN:Er ac–ELD results in a luminance of 5 cd/m\(^2\). The effect of wave form pulse width for a fixed frequency on the device brightness is shown in Fig. 4(b). The increase in brightness with pulse width is due to the fact that during most of the pulse duration the electrons are held near the GaN/dielectric interface. When the pulse is off, the electrons which are not trapped at the interface are free to diffuse away. These “wandering” electrons will not be able to achieve full acceleration during the next pulse. By increasing the pulse width, we increase the number of electrons which can reach the necessary energy for impact excitation of the Er ions. The effect of charge trapping can be readily observed by comparing bipolar and monopolar biasing of the device at the same duty ratio. Strong charge trapping leads to a much brighter emission under bipolar biasing. In these preliminary experiments we have observed an increase of 2X.
for bipolar versus monopolar operation. This indicates that only a moderate amount of trapping is present.

The frequency dependence of the visible (537/558 nm) and infrared (IR) emission (1550 nm) is shown in Fig. 5 for 170 Vp square wave excitation. At 100 kHz a brightness of 300 cd/m² was obtained for the visible emission. The infrared (1550 nm) GaN:Er emission originates from relaxation of the lowest excited Er³⁺ state (4I₁₃/₂) and is of interest for optical communications. At low frequency (<1 kHz) the expected linear relation between frequency and visible and IR emission intensity is observed, with roughly as many photons emitted in the IR as in the green. As the frequency increases beyond 1 kHz there is a clear saturation of the IR intensity. The visible emission intensity also increases sublinearly with frequency at higher frequencies. One can use the frequency for which a 3 dB reduction from the linear relation occurs as an indicator of the onset of this saturation process. From the data of Fig. 5(b), we obtain 3 dB frequencies of ~65 and ~8 kHz for the visible and IR emission intensities, respectively. The frequency saturation process can be related to the GaN:Er excited state lifetime of each particular transition, which in our case have been measured to be on the order of ~10 μs for the visible green emission and ~1 ms for the 1.5 μm IR emission. At low frequency (<1 kHz) an Er atom will have adequate time to radiatively (~537/558 nm) relax from higher excited states to the ground state or to nonradiatively relax to the IR level (4I₁₃/₂) and then radiatively relax (1.5 μm) to the ground state. According to this argument the emission intensity will saturate as the frequency exceeds the inverse of the corresponding excited state lifetime. Based on the lifetime argument, saturation in the IR signal should be noticeable at ~1 and at ~100 kHz for the visible signal. The agreement with the 3 dB frequency is fairly good in the case of the visible signal, but not for the IR signal where saturation at a lower frequency is predicted.

In summary, ac-biased thin-film electroluminescence has been obtained from GaN:Er deposited by MBE on an amorphous dielectric layer. This indicates improved compatibility of phosphors based on the GaN:RE material system with commercial TFEL flat panel display fabrication techniques. It is important to point out that the luminescence values obtained for our preliminary device structure can be further increased by incorporating high permittivity (ε = 20–1000’s) dielectrics (Al₂O₃:TiO₂, BaTa₂O₆, BaTiO₃).

The authors thank P. D. Rack of RIT for many useful discussions on ac–TFEL and M. Garter and D. S. Lee of the UC NanoLab on GaN:Er growth and device operation. This work was supported in part by ARO Contract No. DAA D19-99-1-0348.